IMPORTANT ELECTRICAL EQUATIONS

Capacitors

Current, Amperes (I)

Efficiency

Single-Phase = I = P/E

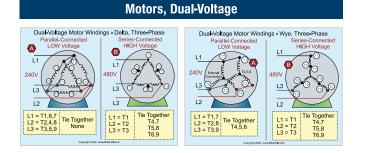
Three-Phase = $I = P/(E_{L-L} \times 1.732)$

Efficiency = Output/Input Output = Input × Efficiency

Input = Output/Efficiency

input – t

Inductors


Inductive Reactance in Ohms = $X_L = 2 \times 3.14 \times f \times L$ Parallel Impedance in Ohms = $Z = 1/(1/X_{L1}) + (1/X_{L2}) + (1/X_{L3})$ Series Impedance in Ohms = $Z = X_{L1} + X_{L2} + X_{L3}$

Impedance (Z)

Impedance in Ohms = $Z = \sqrt{R^2 + (X_L^2 - X_C^2)}$

Motor FLA/Watts

FLA, Single-Phase = $(hp \times 746W)/(E \times Eff \times PF)$ FLA, Three-Phase = $(hp \times 746W)/(E \times 1.732 \times Eff \times PF)$ Watts = Horsepower × 746W

Neutral Current

Single-Phase, 120/240V System: $I_{Neutral} = Line 1 - Line 2$ Three-Phase, 120/208V, 4-wire Wye Connected System: $I_{Neutral} = \sqrt{(I_{L1}^2 + I_{L2}^{2+} I_{L3}^2) - (I_{L1} \times I_{L2}) - (I_{L2} \times I_{L3}) - (I_{L1} \times I_{L3})}$

Parallel Circuit Resistance

 $\begin{array}{ll} R_T = & Resistance/Number \ of \ Resistors & R_T = (R_1 \times R_2)/(R_1 + R_2) \\ R_T = & 1/(1/R_1 + 1/R_2 + 1/R_3) \end{array}$

	Power Factor	
PF = W/VA	VA = W/PF	$W = VA \times PF$

Series Circuit Resistance

 $R_{T} = R_{1} + R_{2} + R_{3}...$

 $E_{T} = E_{1} + E_{2} + E_{3}...$

Short-Circuit Calculation

Short-Circuit Current = Secondary Amperes/Transformer Z%

Temperature Conversions

 $C^{\circ} = 5/9 \times (\text{Temp } F^{\circ} - 32^{\circ})$ $F^{\circ} = (9/5 \times \text{Temp } C^{\circ}) + 32^{\circ}$

Transformers, Single-Phase

I_{Primary} = Transformer VA/E_{L-L} I_{Secondary} = Transformer VA/E_{L-L} Transformer VA = E_{L-L} × I_{Secondary}

Transformers, Three-Phase

$$\begin{split} I_{Primary} &= Transformer VA/(E_{L+L} \times 1.732) \\ I_{Secondary} &= Transformer VA/(E_{L+L} \times 1.732) \\ Transformer VA &= (E_{L+L} \times 1.732) \times I_{Secondary} \end{split}$$

Turns Ratio

Turns Ratio = Primary Volts:Secondary Volts Secondary Volts = Primary Volts/Turns Ratio Primary Volts = Secondary Volts × Turns Ratio

Volt-Amperes

 $\label{eq:single-Phase} \begin{array}{ll} \mbox{Single-Phase} & \mbox{VA} = \mbox{E} \times \mbox{I} \\ \mbox{Three-Phase} & \mbox{VA} = (\mbox{E}_{L-L} \times 1.732) \times \mbox{I} \end{array}$

Voltages

Peak Voltage = Effective (RMS) Voltage \times 1.414 Effective (RMS) Voltage = Peak Voltage \times 0.707 High-Leg Voltage = $V_{L-to-N} \times 1.732$

Voltage Drop, Single-Phase

Voltage Drop = $(2 \times K \times I \times D)/Cmil$ Wire Size = $(2 \times K \times I \times D)/VD$ Distance = $(Cmil \times VD)/(2 \times K \times I)$ K = Cu, 12.90 Ω – Al, 21.20 Ω

Voltage Drop, Three-Phase

 $Voltage Drop = (1.732 \times K \times I \times D)/Cmil \\ Wire Size = (1.732 \times K \times I \times D)/VD \\ Distance = (Cmil \times VD)/(1.732 \times K \times I) \\ K = Cu, 12.90\Omega - AI, 21.20\Omega$

Mike Holt Enterprises MikeHolt.com • 888.632.2633